
1

VMem

By Stewart Lynch.

2

Contents

Introduction.. 3

Overview... 4

Getting started.. 6

Fragmentation.. 7

Virtual Regions.. 8

The FSA... 9

Biasing... 10

The Coalesce allocator.. 11

Skewing indices... 12

De-committing free blocks.. 13

Multithreading.. 14

Integrity checking.. 15

Stats.. 17

Terminology.. 18

3

Introduction

The goal of VMem was to create an allocator that reduced fragmentation and performed well in a

multi-threaded environment without compromising speed or efficiency. VMem had to be a direct

replacement of the standard malloc.

VMem achieves these goals using a number of techniques, specifically related to aggressive de-

committing of virtual memory, biasing, and careful placement of spinlocks. These will all be

discussed in detail.

The kind of environment that VMem was designed for is real-time applications such as games. The

typical load of this sort of system can be tens of thousands of allocations per second and a runtime

of many hours. Fragmentation is often a real issue in these complex applications and so time spent

reducing fragmentation in an allocator can be of real benefit.

Memory corruptions are probably the hardest type of bug to track down. VMem has a significant

amount of internal checking that often catches these bugs close to the source of the problem. This

checking has a negligible overhead in both speed and memory. Additionally, VMem has more heavy

weight checking that can be enabled when needed, that will catch more problems.

VMem has detailed stats reporting. Each heap is broken down into used, unused, overhead,

committed, reserved. This allows you to keep an eye on sizes by allocation, VMem’s internal

overhead and fragmentation.

Credentials

I have been writing malloc replacement allocators since 2001 for large and complex AAA console and

PC games. VMem is a culmination of many years of experience in writing allocators and fixing

fragmentation and memory corruption bugs. VMem has so far out performed all other allocators

that have been tried in terms of speed, overhead and fragmentation. Detailed analysis and

comparisons have been made but due to intellectual property rights these cannot be shared here.

The best way to evaluate an allocator is to drop it into your app and profile the results. Please see

the website for a list of applications that have made use of VMem.

4

Overview

VMem is similar in structure to most malloc replacements. Its main heap consists of multiple sub

heaps each dealing with a different size of allocation. VMem has two sorts of heaps, the fixed size

heap (FSA) and the coalesce heap.

The FSA Heap

A fixed size allocator (FSA) can allocate only one size of allocation which is setup at creation time.

The FSA allocates a page of memory, partitions it up into allocation slots of the desired size, and links

them all together into a free list. Allocating is as simple as removing from the free list.

An FSA Heap is a collection of FSA’s. Typically there will be an FSA for each allocation size from 0 –

512 bytes.

The Coalesce Heap

The coalesce heap can hold allocations of varying size. Each block in memory points to the next free

or allocated block of memory. When a block is freed it attempts to merge (or coalesce) with any

joining free blocks. When allocating the coalesce heap much find the best free block to fit the

allocation.

VMem also has a large heap for allocations that go directly to the OS VirtualAlloc. It keeps a list of all

large allocations so that it can tell if it allocated an allocation.

These heaps can be combined in any way to for the main heap, and they can also be used separately

for individual heaps. VMem contains a default heap VMemHeap that is well balanced for a standard

malloc replacement. The default setup is to have 2 FSA heaps, and 2 coalesce heaps and one large

heap. The reason for having two FSA heaps is that smaller allocations do better with smaller page

sizes. The reason for two coalesce heaps is that segregating allocations of different sizes helps

reduce fragmentation.

5

Additionally VMem has a basic FSA and a basic coalesce allocator. These allocators get the memory

directly from the system and have no internal overhead. Overhead for the other allocators and

heaps is allocated using these basic allocators.

 So far it’s all pretty standard, most allocators have a similar structure. Next I’ll discuss the concepts

behind what makes VMem different. How is reduces fragmentation deals with multi-threading.

System VirtualAlloc

FSA
8

FSA
12

FSA
16...

FSA
64

FSA
80

FSA
96...

Page Heap
4k pages

FSA Heap (0 – 64)

Coalesce Heap
512 – 10K

Large Heap
10Mb +

Page Heap
32k pages

FSA Heap (64 – 512)

Coalesce Heap
10k – 1Mb

6

Getting Started

The simplest way to use VMem is to simply include VMemNew.hpp into the main cpp file of your

app. This will override the new and delete operators to use the default VMemHeap. In more cases

this is all you need to do.

If you need to change the values of the default allocator it is recommended that you create a new

heap class in your app. Simply take a copy of the VMemHeap.cpp, rename it, override new/delete ,

and tweak it as desired. This will make integrating any updates to VMem much easier.

You can have multiple heaps setup in any way that is needed, use VMemHeap as a template. You

can also use the allocators directly in your code as an alternative to using new/delete. The FSA

allocator is particularly useful for cases where you need lots of one type of object and don’t want to

fragment the main heap. Create a local FSA object and call Alloc and Free on that directly.

VMemDefs.hpp is where all the defines live. This where the integrity checking options are enabled

and disabled. It’s where the system page sizes is set. And it defines all of the different guard values.

VMemSys.cpp defines all system functions such as VirtualAlloc that VMem uses. This is currently

only implemented for Win32. If you wish to use VMem on a different platform this file is the only file

in VMem that you should need to modify.

7

Fragmentation

Before discussing VMem in detail we need to define what is meant by fragmentation. Fragmentation

in the most general sense is a measure of the memory that is committed but not in use by app. It is a

measure of wasted memory.

There are two different sorts of fragmentation. One sort of fragmentation will be termed temporal

and the other spatial.

Temporal fragmentation typically happens in a fixed size allocator. The allocator allocates pages of

memory and divides them up into equally sizes slots. In the diagram below both case A and B have

the same number of slots allocated, but because case B is more fragmented it is using up twice the

number of pages.

The important thing to note about temporal fragmentation is that the wasted space can still be used.

If we do lots of allocations and fill in all of the empty slots we eliminate the fragmentation. The

fragmentation is caused by a few allocations in each page having a longer lifetime and stopping the

page from being freed. The fragmentation can be temporary and not necessarily a cause for

concern. The whole reason for these style of allocators is that they eliminate spatial fragmentation

which is a much more insidious problem.

Spatial fragmentation typically happens in coalesce heaps. When a coalesce heap starts to fill up

each allocation is adjacent to the previous allocation and there are no gaps, no fragmentation. After

many allocs and frees, due to allocations not always fitting exactly into free blocks small gaps start to

appear. These gaps are often too small to be re-used and the best we can hope for is that they will

eventually be coalesced into larger blocks. Coalesce heaps suffer from temporal fragmentation as

well as spatial fragmentation.

Again we have case A that has no fragmentation, and case B is what the same heap may look like

after many frees and allocs. They both have the same amount of memory allocated but case B uses

up much more system memory.

VMem has techniques that reduce both sorts of fragmentation. These include biasing, aggressive

decommitting and immediate coalesce. These are discussed in detail in later sections.

Case A

Case B

Case B

Case A

8

Virtual Regions

Memory managers typically allocate memory from the system in large chunks and then divide it up

into smaller chunks for the individual allocators. In VMem these are called Regions. When freeing an

allocation it is very quick to find out which heap it belongs by checking which region contains the

address. Typical memory managers have large regions, and this can lead to a lot of wastage.

In some memory managers fixed size allocators get their memory from the system one page at a

time. While this gets around the wastage due to large regions it can lead to very bad virtual address

space fragmentation. I’ve seen apps that mix a garbage collected language that allocates in 32Mb

regions, with an allocator that allocates single pages at a time, and the result was not pretty.

Where VMem differs is that when regions are created the memory is only reserved, nothing is

committed. A region only commits pages as they are needed, and de-commits then when they are

not needed. This means that a region only uses up as much physical memory as it currently needs.

This lead to a self balancing system, heaps can dynamically resize themselves as demand changes. It

also helps reduce fragmentation, any holes that appear, assuming they are big enough, can be

decommitted back to the system. This, combined with Biasing which is discussed later, radically

reduce memory lost to fragmentation and overhead.

When freeing an allocation we want to find out which heap it came from as quickly as possible.

Ideally we make the region size big enough that there will only be one region per heap. This depends

on the availability of virtual memory. If virtual memory is limited, regions can be made smaller, the

speed hit is not significant.

Having resizable regions also means that much less memory is used overall. If each region was

committed up front we would always be dealing with the worst possible case, which in reality might

never happen. Having the regions resize themselves means that VMem can automatically cope with

many different situations, always only using what it needs, down to the granularity of a page size.

This technique of using virtual memory is not just useful in memory managers. It can also be used for

creating a resizable array that doesn’t need to move in memory. Assuming that it’s a pretty big array

(in terms of the system page size) we can set it up in the same way, we reserved the entire range on

creation, and commit and de-commit pages are the array resizes. The array will only use up as much

memory as necessary, and assuming we have enough virtual address space we can reserve as much

as we like.

Reserved

Committed Decommitted

9

The FSA

The FSA gets its memory from a page heap. When a page is allocated by the FSA it divides the page

up into equal sizes slots and links them all together into a free list. To allocate, a slot it is taken off

the head of the free list. Freeing a slot puts it back into the head of the free list. The pointer to the

next free slot is embedded into the slot so there is no overhead. Note that the free slot list is not

sorted by address so the free slots can be in any order.

The FSA has a page free list which contains pages that are partially full. When a page is full it is taken

off the free list and when a page is empty it is given back to the page heap. Each page has its own

slot free list. The reason that the FSA has a page free list and free slot list per page rather than on

single free slot list that spans all pages is because of the biasing.

An FSA heap contains a page heap. The page heap is setup to allocate pages of a specified size, for

example 4k or 32k. The page size must be a multiple or whole fraction of the system page size.

Whenever an FSA allocator in the FSA heap needs some memory it gets it from the page heap.

The page heap has a list of regions. These regions are reserved ranges of memory. Typically if virtual

memory is not a constraint the region size is made to be big enough that the page heap will only

have one region. Allowing for multiple regions give us flexibility and a guarantee that we won’t run

out of space while there is still system memory available.

Typically a region is 32Mb, the system page size is 4K and the page size is 32k. The example

illustrates how it would look if the sub FSA page size was half the system page size with two regions.

As can be seen when no sub pages in a system page are in use the system page is decommitted back

to the system. Committed pages are biased towards low memory.

Page Heap

Virtual Memory Region1

Region2

Unreserved
Page in use

by FSA

Decommitted Committed

FSA page

Slot in use

Slot free list

Region points to next region

10

Biasing

All empty system pages are decommitted back to the system, but there is a problem with this

technique. The way that many allocators work is they give back the most recently freed allocation. A

freed allocation gets pushed onto a list, and then immediately popped back off when another

allocation of that size is requested. This is good for the CPU cache but it has a drawback. If we

assume that the freeing pattern is random this also makes the allocation pattern random. Over time

the allocations will diffuse over the entire range and we will have lots of free space, but no system

page will be empty so we can’t decommit anything.

The way to get around this problem is biasing. Speed of allocation is of prime importance, so we

can’t do anything too fancy, but it turns out that simply biasing all allocations to the lowest address

gives very good results. Here, biasing simply means always allocating the free slot that is lowest in

memory. Because all the used memory is squashed up to one end of the range it becomes more

likely that pages can be decommitted at the other end of the range.

An FSA has a page free list, a list of pages that have at least one empty slot. To bias the allocations

we simply need to keep this list sorted by page address, lowest to highest. Allocations within a page

do not need to be biased because that won’t have any effect on whether we can free the system

page.

All FSA allocators in an FSA heap share the same page allocator. Each FSA is always allocating from

the lowest pages that it has. This means that the page heap is much more likely to be able to

decommit system pages from the high end of the range.

System Page

Decommit pages back to system

FSA Page

11

The Coalesce Allocator

The coalesce allocator uses the ‘best fit’ and ‘immediate coalesce’ algorithms.

‘Best fit’ in terms of a coalesce allocator means that it always allocates the smallest block that is big

enough for the allocation. Immediate coalesce means that when freeing an allocation the free block

will be coalesce immediately with any adjacient free blocks.

This is not the fastest coalesce algorithms, but they have been found to reduce fragmentation.

Because we have the FSA heaps to deal with the majority of allocations per frame, speed of the

coalesce allocator is not so much of an issue. Real-time applications typically allocate an order of

magnitude more small allocations per frame than large ones. Because coalesce heaps tend to have

the worst fragmentation it is worth spending the extra cycles.

The coalesce allocator has a list of regions. Each region contains free and allocated blocks. Each

block has a header. Free block headers point to a free node. Each free node is linked into a free list.

The header also stores the sizes of the allocation and the previous allocation, these are used for

coalescing.

The reason that the free nodes are not embedded into the header is speed up iteration and sorting

of the free lists. The nodes are all allocated using an internal FSA which makes iterating over the

nodes very cache friendly.

A Coalesce allocator has a minimum and maximum of size it can allocate. There are 256 free lists,

one for each size range. Shown below is what it might look like for a coalesce heap with minimum

512 bytes and maximum 10k.

512-549 550-550 550-550 ... 10k

node

549

node

549

node

549

node

549

node

549

node

549

node

549

node

549

node

549

node

549

node

549

node

549

Array of

free lists

0 1 2 ... 256

Free list

Allocated block

Free block

Region

Node Node Node

Header

12

To allocate a specific size it first finds the free list, and then iterates over the nodes to find one that

is big enough. If no nodes are big enough it tries the next free list. When a region is created it creates

a single free block of the entire region size and adds it to the free list at index 256.

When allocating sometimes the allocation won’t quite fit into the smallest free block and there will

be a small leftover free block, In VMem this is called a fragment. If this free block is smaller than the

minimum allocation size for this allocator there is no point putting it into the node free list, it can’t

be reallocated and would just slow things down. These free blocks are marked as fragments. When

freeing an allocation any adjoining fragments will be coalesced ensuring that these small holes can

be re-used.

Skewing indices

It was found that there are typically many more allocations of smaller sizes than large sizes. This

unbalanced the free lists, with the first few having lots of free nodes and the last having less, this

made iterating and sorting the small free lists quite slow. To counter this effect a function is applied

to the free list index to skew the sizes to the end of the free list. This makes the distribution of sizes

between all free lists more even.

The index is worked out like so:

 r = max – min
 s = max – alloc_size

skew = m - (s*s*s) / (r*r)
index = (skew * 255) / r

0

50

100

150

200

250

300

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

index

skewed index

13

De-committing free blocks

The problem with coalesce heaps is that they can become very fragmented. This is somewhat

unavoidable, because they have to deal with different sizes of allocations, and because of the

inherent randomness of allocation patterns fragmentation is inevitable. However, we can use the

same techniques to reduce the problem.

When an allocation is freed, after it has coalesced with any adjacent free blocks we can decommit

any system pages that lie entirely within the freed block. The coalesce allocator uses the ‘best fit’

and ‘immediate coalesce’ algorithms in order to maximise the size of the free blocks and increase

the chances of being able to decommit pages.

The coalesce allocator also uses biasing to low memory, which has similar benefits as has been

described in the FSA allocator. If there are equally good free blocks the lowest one in memory is

always used. This is only a small bias, but it has been found that ‘best fit’ has a bigger impact than

the bias. However, the bias can still make a significant difference.

Allocated Free

System page in free block

can be decommitted

14

Multi-threading

Multi-threading is increasingly becoming a requirement for all applications, especially real-time

applications. Therefore a malloc replacement not only needs to be thread save, but needs to

perform well under high contention. Simply putting a critical section around the entire heap can lead

to very poor performance.

One thing to note is that in most applications small allocations vastly outnumber larger allocations.

For example a typical game might allocate up to 40,000 allocations per second from 0 – 64 bytes,

and maybe only around 100 larger allocations per frame. This means that the coalesce heaps would

have virtually no contention so simply putting a lock around each larger heap will suffice. The FSA

heaps is where we need to focus our attention.

The first incarnation of VMem used a lock free algorithm for the FSA allocators, but this has since

been dropped in favour of multiple spinlocks. Lock free lists are a solved problem, so at first sight

implementing a lock free FSA seems simple. The problem comes when deciding when to release an

empty page. Guaranteeing that no other thread comes along and allocates from the empty page

before it is released is currently an unsolved problem. Steps were taking in the VMem allocator to

ensure that this didn’t happen, but there was still a window of opportunity. The crash only showed

up once in two weeks of rigorous testing in a real-world application. Other allocators that claim to be

lock free have a very similar problem, although the one that I looked at had a tendency to leak pages

instead of crashing. To my knowledge a lock free allocator is currently an unsolved problem, despite

what certain papers may lead you to believe.

The current solution VMem uses is for each FSA to have its own spinlock.

Interestingly, in practice using the current spinlock solution was significantly faster than the

(admittedly broken) lock free algorithm. The lock free algorithm did perform better if two threads

were in high contention both continuously allocating from the same FSA, but in reality this is quite a

rare condition. Most large applications have fairly random allocation patterns, two threads allocating

the same size at the same time is usually quite rare. Under such low contention spinlocks were out

performing the lock free algorithm. The reason for this is that because two CAS instructions were

needed, two memory barriers were also needed, and memory barriers are not cheap. The two

memory barriers were a constant cost even under no contention. A spinlock only has one memory

barrier. To make the lock free FSA totally safe would almost certainly require adding more

complexity, and slow it down even more, so even if it was possible it would still be slower than using

spin locks.

15

Integrity Checking

VMem has a significant amount of integrity checking. This checking is reason alone for using VMem.

Tracking down memory corruptions, caused by things like buffer overruns and writing to deleted

objects are a class of the hardest type of bug. These bugs can take up a huge amount of time at the

end of a project and can make the released app buggy if they are not all found. Catching them early

is the best form of defence, and VMem has a few tricks to help.

Each integrity checking feature can be enabled or disabled independently, although there are a few

that are recommended to be always on except in the very final build. Other more heavy weight

options can be turned on after a problem has been detected.

The CheckIntegrity function can be called at any time to run a full check of all heaps. This is quite a

slow function, but is useful for narrowing down a bug. Alternatiively incremental checking can be

turned on which spreads the checking of the heaps across a few frames.

All of the defines listed below can be found in MemSysDefs.hpp, along with all of the guard values

and what they mean.

VMEM_ASSERTS

VMem asserts on pretty much everything that it can assert on. Asserts can be turned off, but in my

experience leaving them on can save a lot of time in the long run, with memory corruptions being

caught much earlier. The speed hit for these asserts is minimal, they are all cheap checks taking a

few instructions.

VMEM_MEMSET

VMem will set all uninitialized memory to a non-zero value and clear all freed memory to a different

value. This is very useful for checking for uninitialized variables and writing to deleted objects. It is

recommended to always have this enabled except for final builds.

VMEM_FSA_GUARDS

In FSA allocators guards are put at the start and or end of each slot. Typically only the end guard is

used, adding just 4 bytes to each allocation. Again, the extra memory usage is not large, so this can

always be enabled for debug builds.

VMEM_COALESCE_GUARDS

In Coalesce allocators guards are put at the start and end of each allocation.

VMEM_ALTERNATE_PAGES

This is for FSA page heaps. Only alternate pages are ever committed in each range. This means that

every other page is decommitted, and if anything tries to write to that page there will be a system

exception. This is particularly useful for catching buffer overruns and the worst sort of memory

corruption where random sections of memory are written to. The great benefit of this is that the

program will halt immediately anything tries to write to a decommitted page, allowing you to see

what the cause is. The other benefit of this is that it only uses up virtual memory, no more memory

16

is committed, and there is no CPU overhead. If you have virtual memory to space this can be left on

in debug builds.

VMEM_COALESCE_GUARD_PAGES

This is similar to the alternate pages for the FSA page heap. When the coalesce heap reserves a

range it allocates guard allocations, without committing the memory, these allocations are never

freed. If something writes to these allocations the system will immediately throw an exception.

Again, this uses up no extra memory because the memory is not committed and there is no CPU

overhead.

VMEM_INC_INTEG_CHECK

Incremental integrity check. This define is set to a value, such as 1000. Every 1000 allocations VMem

performs a full integrity check on one of the heaps, cycling through the heaps on each integrity

check. Full integrity checks can be quite slow so usually only turn this in if there is a problem. This

can be very useful in catching memory corruptions closer to the source of the problem.

VMEM_TRAIL_GUARDS

Enabling trail guards ensures that the last n free allocations will not be re-allocated. When an

allocation is freed is pushed onto a guard queue. If the guard queue has reached its maximum size

an allocation is popped off the end of the queue and freed. When an allocation goes onto the guard

queue the memory is cleared to a specific value, and when it is popped off it checks that the

allocation still has the same value. Trail guards are a very powerful tool for catching people using

objects that have been deleted which would otherwise lead to memory corruptions.

The speed overhead for trail guards is minimal and the memory overhead can be set to whatever

you want. By default turning on this define will put small trail guards on each FSA. However,

sometimes it is useful to turn trail guards on for just one FSA and give the trail as much memory as

you can spare. For example if the memory corruption is always hitting allocations of the same size

trail gaurds can be enabled for that FSA. The more memory the trail is given the better it will work

because the longer it will take for it to come off the trail.

Trail guards can be enabled for FSA allocators and Coalesce allocators. In my experience most

memory corruption bugs are caused by deleted objects being written to, and trail guards are the

single most effective way of tracking these down. Once the overwrite has been caught a memory

profiler that has a history option that can show the previous owners of the memory will usually show

the cause of the problem.

FSA Free alloc

Conceptually when an allocation is freed it goes onto the trail guard queue and an allocation

from the other end of the queue is pushed off and given back to the FSA.

Anything writing to the allocation while it’s on the queue is caught.

Trail queue

17

Stats

VMem keeps track of stats for all of its heaps. This is controlled by the VMEM_STATS define. It is

recommended to keep it enabled in all but the final build. The overheads are negligible in terms of

both speed and memory.

Note that VMem only stores general stats for each heap, it does not record all allocations or call

stacks. Storing detailed information on allocations should be done by an external memory profiler,

writing it into an allocator adds unnecessary overhead and complexity.

Below is an example of the output of the stats for the main heap.

 Used Unused Overhead Total Reserved

 FSA1: 56% 15936396 (15.2Mb) 3474104 (3.3Mb) 8773684 (8.4Mb) 28184184 (26.9Mb) 67108864 (64.0Mb)

 FSA2: 81% 33447268 (31.9Mb) 5007056 (4.8Mb) 2386272 (2.3Mb) 40840596 (38.9Mb) 100663296 (96.0Mb)

Coalesce1: 77% 32258160 (30.8Mb) 9090808 (8.7Mb) 495768 (0.5Mb) 41844736 (39.9Mb) 67166208 (64.1Mb)

Coalesce2: 98% 42814784 (40.8Mb) 636452 (0.6Mb) 23708 (0.0Mb) 43474944 (41.5Mb) 100667392 (96.0Mb)

 Large: 99% 269308158 (256.8Mb) 101582 (0.1Mb) 564 (0.0Mb) 269410304 (256.9Mb) 269410304 (256.9Mb)

 Internal: 0% 0 (0.0Mb) 5052 (0.0Mb) 12344 (0.0Mb) 17396 (0.0Mb) 32768 (0.0Mb)

 TOTAL: 92% 393764766 (375.5Mb) 18315054 (17.5Mb) 11692340 (11.2Mb) 423772160 (404.1Mb) 605048832 (577.0Mb)

Each row is a different heap. The percent in the first column is the percent of used to committed

memory. Each size is shown in bytes and Mb. The columns are defines as follows:

Used: Amount of memory in use by the app.

Unused: Amount of memory allocated by VMem but not in use by the app. Usually an

indicator of fragmentation.

Overhead: Memory allocated by the allocator classes for tracking purposes. This is usually

negligible.

Total: The total amount of memory committed by VMem. Used + Unused + Overhead

Reserved: The amount of memory that has been reserved. Includes both committed and non-

committed memory.

18

Terminology

Allocator: Class that allocates memory. For example a ‘fixed size allocator’ or a coalesce

allocator.

Heap: Contains one or more allocators for allocating memory. For example an FSA heap

contains an FSA for each allocation size.

FSA: Fixed Size Allocator. Allocates slots of a single size. Slots have zero overhead.

Slot: Single item in a fixed size allocator. A slot can be in a used or unused state.

PageHeap: An allocator that is setup to allocate pages of a specified size. A page heap has a

linked list of regions.

Coalesce: To join two adjacient free blocks of memory into one single block.

Block: Block of memory is either an allocated or free section of memory in a coalesce heap.

Region: A contiguous range of reserved pages. For example a page heap has a list of regions

it can commit pages from.

Spinlock: Can be locked or released. When locked stops other threads entering the code

block. Other threads spin continuously checking the state of the lock.

Biasing: Make allocations more likely to be allocated in a specific place, usually low memory.

Guard: Memory that should not be written to by the application and that is set to a specific

value. This value is then checked at part of the integrity checking to ensure nothing

has written to it. Guards are often put immediately after the end of an allocation.

